Muscle Na-K-pump and fatigue responses to progressive exercise in normoxia and hypoxia.

نویسندگان

  • S D Sandiford
  • H J Green
  • T A Duhamel
  • J D Schertzer
  • J D Perco
  • J Ouyang
چکیده

To investigate the effects of hypoxia and incremental exercise on muscle contractility, membrane excitability, and maximal Na(+)-K(+)-ATPase activity, 10 untrained volunteers (age = 20 +/- 0.37 yr and weight = 80.0 +/- 3.54 kg; +/- SE) performed progressive cycle exercise to fatigue on two occasions: while breathing normal room air (Norm; Fi(O(2)) = 0.21) and while breathing a normobaric hypoxic gas mixture (Hypox; Fi(O(2)) = 0.14). Muscle samples extracted from the vastus lateralis before exercise and at fatigue were analyzed for maximal Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluorescein phosphatase) activity in homogenates. A 32% reduction (P < 0.05) in Na(+)-K(+)-ATPase activity was observed (90.9 +/- 7.6 vs. 62.1 +/- 6.4 nmol.mg protein(-1).h(-1)) in Norm. At fatigue, the reductions in Hypox were not different (81 +/- 5.6 vs. 57.2 +/- 7.5 nmol.mg protein(-1).h(-1)) from Norm. Measurement of quadriceps neuromuscular function, assessed before and after exercise, indicated a generalized reduction (P < 0.05) in maximal voluntary contractile force (MVC) and in force elicited at all frequencies of stimulation (10, 20, 30, 50, and 100 Hz). In general, no differences were observed between Norm and Hypox. The properties of the compound action potential, amplitude, duration, and area, which represent the electromyographic response to a single, supramaximal stimulus, were not altered by exercise or oxygen condition when assessed both during and after the progressive cycle task. Progressive exercise, conducted in Hypox, results in an inhibition of Na(+)-K(+)-ATPase activity and reductions in MVC and force at different frequencies of stimulation; these results are not different from those observed with Norm. These changes occur in the absence of reductions in neuromuscular excitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance.

Care Med 168: 425–430, 2003. 28. Sandiford SD, Green HJ, Duhamel TA, Schertzer JD, Perco JD, Ouyang J. Muscle Na-K-pump and fatigue responses to progressive exercise in normoxia and hypoxia. Am J Physiol Regul Integr Comp Physiol 289: R441–R449, 2005. 29. Smith SA, Querry RG, Fadel PJ, Gallagher KM, Stromstad M, Ide K, Raven PB, Secher NH. Partial blockade of skeletal muscle somatosensory affer...

متن کامل

Counterpoint: Afferent Feedback from Fatigued Locomotor Muscles Is Not an Important Determinant of Endurance Exercise Performance

Care Med 168: 425–430, 2003. 28. Sandiford SD, Green HJ, Duhamel TA, Schertzer JD, Perco JD, Ouyang J. Muscle Na-K-pump and fatigue responses to progressive exercise in normoxia and hypoxia. Am J Physiol Regul Integr Comp Physiol 289: R441–R449, 2005. 29. Smith SA, Querry RG, Fadel PJ, Gallagher KM, Stromstad M, Ide K, Raven PB, Secher NH. Partial blockade of skeletal muscle somatosensory affer...

متن کامل

Downregulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia.

To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise...

متن کامل

Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia.

Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight healthy men performed exhaustive constant work rate knee extension (21 +/- 3 W, 79 +/- 2 and 87 +/- 2% o...

متن کامل

Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes.

Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na(+)-K(+)-ATPase content, whereas fatiguing contractions reduce Na(+)-K(+)-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na(+)-K(+)-ATPase activity and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 289 2  شماره 

صفحات  -

تاریخ انتشار 2005